Revealing unseen dynamical regimes of ecosystems from population time-series data

Author:

Medeiros Lucas P.ORCID,Sorenson Darian K.,Johnson Bethany J.ORCID,Palkovacs Eric P.ORCID,Munch Stephan B.ORCID

Abstract

AbstractMany ecosystems can exist in alternative dynamical regimes for which small changes in an environmental driver can cause sudden jumps between regimes. However, predicting the dynamics of regimes that occur under unobserved levels of the environmental driver has remained an unsolved challenge in ecology with important implications for conservation and management. Here we show that integrating population time-series data and information on the putative driver into an empirical dynamic model allows us to predict new dynamical regimes without the need to specify a population dynamics model. As a proof of concept, we demonstrate that we can accurately predict fixed-point, cyclic, or chaotic dynamics under unseen driver levels for a range of simulated models. For a model with an abrupt population collapse, we show that our approach can anticipate the regime that follows the tipping point. We then apply our approach to data from an experimental microbial ecosystem and from a lake planktonic ecosystem. We find that we can reconstruct transitions away from chaos in the experimental ecosystem and anticipate the dynamics of the oligotrophic regime in the lake ecosystem. These results lay the groundwork for making rational decisions about preventing, or preparing for, regime shifts in natural ecosystems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3