Optimized LC-MS/MS method for Doxorubicin quantification: validating drug uptake and tumor reduction in zebrafish xenograft model of breast cancer

Author:

Rahman Ghazala,Pramanik Atanu,Das Susmita,Roy Anindya,Bhargava Anamika

Abstract

AbstractDoxorubicin, a potent chemotherapeutic drug, is widely used against various cancers, notably breast cancer. While its efficacy is well-documented, precise dosage determination in experimental models remains challenging. Zebrafish xenografts of various cancers confirm doxorubicin’s anti-cancerous effect; however, since doxorubicin treatment of zebrafish larva is done by adding doxorubicin to fish water, the precise chemotherapeutic dosage for zebrafish larva remains unknown. In this study, we provide a liquid chromatography tandem mass-spectrometry (LC-MS/MS) method for quantifying doxorubicin uptake in zebrafish larvae and thus provide a direct estimate of doses required for the therapeutic effect. Alongside quantification, we measured the therapeutic effect of doxorubicin in zebrafish larvae xenografted with triple negative breast cancer cell line, MDA-MB-231. LD50value of doxorubicin was first determined by incubating 3-days post fertilization (dpf) larvae with different doses of doxorubicin for 72 h. Doxorubicin was quantified both from zebrafish larval homogenate and treatment solution. Analysis was performed by selected-reaction monitoring (SRM) scans in positive ionization mode. LD50value for 72 h calculated to be 35.95 mg/L. As expected, doxorubicin-treated xenografts exhibited a significant reduction in tumor growth. The range of limit of detection (LOD) and limit of quantification (LOQ) for doxorubicin were 2 and 5 μg/L respectively. Intra- and inter-day accuracy was within the range of 82-114%. Overall, in this study we describe a reliable method for quantifying doxorubicin in zebrafish larvae. Our study facilitates precise dosage estimation, enhancing the relevance of zebrafish xenograft model in cancer research and potentially improving translational applications of chemotherapeutic treatments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3