Extracting and calibrating population evidence of variant pathogenicity using biobank data

Author:

Bhat VineelORCID,Yu Tian,Brown Lara,Pejaver Vikas,Lebo Matthew,Harrison Steven,Cassa Christopher A.ORCID

Abstract

SummaryAdvancing genomic medicine relies on our ability to assess the phenotypic impacts of rare germline variants, which remains challenging even in highly sequenced monogenic disease genes. Here, we evaluate the use of population sequencing data from the UK Biobank to identify variants which alter disease risk, focusing on familial hypercholesterolemia (FH), hereditary breast and ovarian cancer syndrome (HBOC), and Lynch syndrome (CRC). We model evidence of pathogenicity from population data at the variant level, and demonstrate that odds ratios generated from population cohort data can significantly separate ClinVar pathogenic and benign variants in FH genes (p = 4.5x10-19), HBOC genes (p = 2.5x10-39), and CRC genes (p = 7.6x10-16). Next, to make use of this information in variant assessment, we calibrate population-based odds ratios (ACMG/AMP PS4) at the gene level, and find that they reach ‘strong’ or ‘very strong’ evidence of pathogenicity in 8 of 11 genes, as well as in aggregate. Among participants with a rare variant in these 8 genes, 4.3% (N = 2,456) have a Variant of Uncertain Significance (VUS) or variant not yet observed in ClinVar with strong population evidence of pathogenicity that could inform variant interpretation for a related disorder. In three genes with functional assays, we combine this population evidence with computational, contextual, and experimental evidence. Notably, 12.4% ofLDLRVUS seen in participants have sufficient evidence to be classified as pathogenic. This method offers a scalable approach to integrate evidence of pathogenicity from population data.HighlightsUses population data to identify rare coding variants which increase risk of clinically actionable phenotypes.Population-based disease odds ratios accurately distinguish ClinVar pathogenic and benign variants.Calibrates odds ratios at the gene level to identify their strength of evidence for variant classification.Combines various evidence types to reclassify a substantial fraction of variants of uncertain significance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3