Latent generative modeling of long genetic sequences with GANs

Author:

Szatkownik Antoine,Furtlehner Cyril,Charpiat Guillaume,Yelmen Burak,Jay Flora

Abstract

AbstractSynthetic data generation via generative modeling has recently become a prominent research field in genomics, with applications ranging from functional sequence design to high-quality, privacy-preserving artificial in silico genomes. Following a body of work on Artificial Genomes (AGs) created via various generative models trained with raw genomic input, we propose a conceptually different approach to address the issues of scalability and complexity of genomic data generation in very high dimensions. Our method combines dimensionality reduction, achieved by Principal Component Analysis (PCA), and a Generative Adversarial Network (GAN) learning in this reduced space. Using this framework, we generated genomic proxy datasets for very diverse human populations around the world. We compared the quality of AGs generated by our approach with AGs generated by the established models and report improvements in capturing population structure, linkage disequilibrium, and metrics related to privacy leakage. Furthermore, we developed a frugal model with orders of magnitude fewer parameters and comparable performance to larger models. For quality assessment, we also implemented a new evaluation metric based on information theory to measure local haplotypic diversity, showing that generative models yield higher diversity than real genomes. In addition, we addressed the shrinkage issue associated with PCA and generative modeling, examined its relation to the nearest neighbor resemblance metric, and proposed a resolution. Finally, we evaluated the effect of different binarization methods on the quality of the output AGs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3