Variational inference of single cell time series

Author:

Xu BingxianORCID,Braun RosemaryORCID

Abstract

AbstractTime course single–cell RNA sequencing (scRNA-seq) enables researchers to probe genome–wide expression dynamics at the the single cell scale. However, when gene expression is affected jointly by time and cellular identity, analyzing such data — including conducting cell type annotation and modeling cell type–dependent dynamics — becomes challenging. To address this problem, we propose SNOW (SiNgle cell flOW map), a deep learning algorithm to deconvolve single cell time series data into time– dependent and time–independent contributions. SNOW has a number of advantages. First, it enables cell type annotation based on the time–independent dimensions. Second, it yields a probabilistic model that can be used to discriminate between biological temporal variation and batch effects contaminating individual timepoints, and provides an approach to mitigate batch effects. Finally, it is capable of projecting cells forward and backward in time, yielding time series at the individual cell level. This enables gene expression dynamics to be studied without the need for clustering or pseudobulking, which can be error prone and result in information loss. We describe our probabilistic framework in detail and demonstrate SNOW using data from three distinct time course scRNA-seq studies. Our results show that SNOW is able to construct biologically meaningful latent spaces, remove batch effects, and generate realistic time–series at the single–cell level. By way of example, we illustrate how the latter may be used to enhance the detection of cell type–specific circadian gene expression rhythms, and may be readily extended to other time–series analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3