Energy filtering enables macromolecular MicroED data at sub-atomic resolution

Author:

Clabbers Max T.B.ORCID,Hattne JohanORCID,Martynowycz Michael W.ORCID,Gonen TamirORCID

Abstract

High resolution information is important for accurate structure modelling. However, this level of detail is typically difficult to attain in macromolecular crystallography because the diffracted intensities rapidly fade with increasing resolution. The problem cannot be circumvented by increasing the fluence as this leads to detrimental radiation damage. Previously, we demonstrated that high quality MicroED data can be obtained at low flux conditions using electron counting with direct electron detectors. The improved sensitivity and accuracy of these detectors essentially eliminate the read-out noise, such that the measurement of faint high-resolution reflections is limited by other sources of noise. Inelastic scattering is a major contributor of such noise, increasing background counts and broadening diffraction spots. Here, we demonstrate that a substantial improvement in signal-to-noise ratio can be achieved using an energy filter to largely remove the inelastically scattered electrons. This strategy resulted in sub-atomic resolution MicroED data from proteinase K crystals, enabling accurate structure modelling and the visualization of detailed features. Interestingly, filtering out the noise revealed diffuse scattering phenomena that can hold additional structural information. Our findings suggest that combining energy filtering and electron counting can provide more accurate measurements at higher resolution, providing better insights into protein function and facilitating more precise model refinement.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3