Interpretable Solutions for Stochastic Dynamic Programming

Author:

Ferrer-Mestres Jonathan,Dietterich Thomas G.,Buffet Olivier,Chadès Iadine

Abstract

AbstractIn conservation of biodiversity, natural resource management and behavioural ecology, stochastic dynamic programming, and its mathematical framework, Markov decision processes (MDPs), are used to inform sequential decision-making under uncertainty. Models and solutions of Markov decision problems should be interpretable to derive useful guidance for managers and applied ecologists. However, MDP solutions that have thousands of states are often difficult to understand. Difficult to interpret solutions are unlikely to be applied, and thus we are missing an opportunity to improve decision-making. One way of increasing interpretability is to decrease the number of states.Building on recent artificial intelligence advances, we introduce a novel approach to compute more compact representations of MDP models and solutions as an attempt at improving interpretability. This approach reduces the size of the number of states to a maximum numberKwhile minimising the loss of performance compared to the original larger number of states. The reduced MDP is called aK-MDP. We present an algorithm to computeK-MDPs and assess its performance on three case studies of increasing complexity from the literature. We provide the code as a MATLAB package along with a set of illustrative problems.We found thatK-MDPs can achieve a substantial reduction of the number of states with a small loss of performance for all case studies. For example, for a conservation problem involving Northern Abalone and Sea Otters, we reduce the number of states from 819 to 5 states while incurring a loss of performance of only 1%. For a dynamic reserve selection problem with seven dimensions, while an impressive reduction in the number of states was achieved, interpreting the optimal solutions remained challenging.Modelling problems as Markov decision processes requires experience. While several models may represent the same problem, reducing the number of states is likely to make solutions and models more interpretable and facilitate the extraction of meaningful recommendations. We hope that this approach will contribute to the uptake of stochastic dynamic programming applications and stimulate further research to increase interpretability of stochastic dynamic programming solutions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3