Extensive exploration of structure activity relationships for the SARS-CoV-2 macrodomain from shape-based fragment merging and active learning
Author:
Correy Galen J.ORCID, Rachman MoiraORCID, Togo TakayaORCID, Gahbauer StefanORCID, Doruk Yagmur U.ORCID, Stevens MaisieORCID, Jaishankar PriyadarshiniORCID, Kelley BrianORCID, Goldman BrianORCID, Schmidt MollyORCID, Kramer TrevorORCID, Ashworth AlanORCID, Riley PatrickORCID, Shoichet Brian K.ORCID, Renslo Adam R.ORCID, Walters W. PatrickORCID, Fraser James S.ORCID
Abstract
AbstractThe macrodomain contained in the SARS-CoV-2 non-structural protein 3 (NSP3) is required for viral pathogenesis and lethality. Inhibitors that block the macrodomain could be a new therapeutic strategy for viral suppression. We previously performed a large-scale X-ray crystallography-based fragment screen and discovered a sub-micromolar inhibitor by fragment linking. However, this carboxylic acid-containing lead had poor membrane permeability and other liabilities that made optimization difficult. Here, we developed a shape- based virtual screening pipeline - FrankenROCS - to identify new macrodomain inhibitors using fragment X-ray crystal structures. We used FrankenROCS to exhaustively screen the Enamine high-throughput screening (HTS) collection of 2.1 million compounds and selected 39 compounds for testing, with the most potent compound having an IC50value equal to 130 μM. We then paired FrankenROCS with an active learning algorithm (Thompson sampling) to efficiently search the Enamine REAL database of 22 billion molecules, testing 32 compounds with the most potent having an IC50equal to 220 μM. Further optimization led to analogs with IC50values better than 10 μM, with X-ray crystal structures revealing diverse binding modes despite conserved chemical features. These analogs represent a new lead series with improved membrane permeability that is poised for optimization. In addition, the collection of 137 X-ray crystal structures with associated binding data will serve as a resource for the development of structure-based drug discovery methods. FrankenROCS may be a scalable method for fragment linking to exploit ever-growing synthesis-on- demand libraries.
Publisher
Cold Spring Harbor Laboratory
Reference37 articles.
1. M. Schuller , G. J. Correy , S. Gahbauer , D. Fearon , T. Wu , R. E. Díaz , I. D. Young , L. Carvalho Martins , D. H. Smith , U. Schulze-Gahmen , T. W. Owens , I. Deshpande , G. E. Merz , A. C. Thwin , J. T. Biel , J. K. Peters , M. Moritz , N. Herrera , H. T. Kratochvil , QCRG Structural Biology Consortium, A. Aimon , J. M. Bennett , J. Brandao Neto , A. E. Cohen , A. Dias , A. Douangamath , L. Dunnett , O. Fedorov , M. P. Ferla , M. R. Fuchs , T. J. Gorrie-Stone , J. M. Holton , M. G. Johnson , T. Krojer , G. Meigs , A. J. Powell , J. G. M. Rack , V. L. Rangel , S. Russi , R. E. Skyner , C. A. Smith , A. S. Soares , J. L. Wierman , K. Zhu , P. O’Brien , N. Jura , A. Ashworth , J. J. Irwin , M. C. Thompson , J. E. Gestwicki , F. von Delft , B. K. Shoichet , J. S. Fraser , I. Ahel , Fragment binding to the Nsp3 macrodomain of SARS-CoV-2 identified through crystallographic screening and computational docking. Sci Adv 7 (2021). 2. Iterative computational design and crystallographic screening identifies potent inhibitors targeting the Nsp3 macrodomain of SARS-CoV-2 3. Fragmenstein: predicting protein-ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology 4. ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery;J. Chem. Inf. Model,2020 5. Twenty years on: the impact of fragments on drug discovery
|
|