Machine learning for comprehensive interaction modelling improves disease risk prediction in the UK Biobank

Author:

Julkunen HeliORCID,Rousu Juho

Abstract

AbstractUnderstanding how risk factors interact to jointly influence disease risk can provide insights into disease development and improve risk prediction. We introducesurvivalFM, a machine learning extension to the widely used Cox proportional hazards model that incorporates estimation of all potential pairwise interaction effects on time-to-event outcomes. The method relies on learning a low-rank factorized approximation of the interaction effects, hence overcoming the computational and statistical limitations of fitting these terms in models involving many predictor variables. The resulting model is fully interpretable, providing access to the estimates of both individual effects and the approximated interactions. Comprehensive evaluation ofsurvivalFMusing the UK Biobank dataset across ten disease examples and a variety of clinical risk factors and omics data modalities shows improved discrimination and reclassification performance (65% and 97.5% of the scenarios tested, respectively). Considering a clinical scenario of cardiovascular risk prediction using predictors from the established QRISK3 model, we further show that the comprehensive interaction modelling adds predictive value beyond the individual and age interaction effects currently included. These results demonstrate that comprehensive modelling of interactions can facilitate advanced insights into disease development and improve risk predictions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3