Identification of Antiviral Drug Candidates Against Monkeypox DNA Polymerase and Profilin-like Protein A42R Utilizing anIn-SilicoApproach

Author:

Amjid Muhammad,Khan Muhammad Maroof,Pastore Stephen F.,Vincent John B.ORCID,Muhammad Tahir

Abstract

ABSTRACTMonkeypox virus (MPXV) is emerging as a major concern in the field of infectious diseases. Current treatments are limited, highlighting the need for new therapeutic options. The use of computational methods, such as molecular docking and molecular dynamic (MD) simulations, is a valuable approach in identifying potential compounds that can target specific proteins of the virus, like the DNA polymerase and profilin-like protein A42R in this case, with the aim of controlling the disease. Our study focused on screening various libraries of compounds for predicted binding to MPXV DPol and A42R proteins, with the top-performing molecules identified based on their docking scores. Among these, Dorsilurin K and Mangostin in complex with DPol, whereas [2-oxo-2-[3-(3,4,5,6-tetrahydro-2H-azepin-7-ylsulfamoyl)anilino]ethyl] 3,5-dimethylbenzoate and N-[4-[2-[4-(4-methylphenyl)sulfonylpiperazin-1-yl]-2-oxoethoxy]phenyl]furan-2-carboxamide in complex with A42R stand out with notably high docking scores, suggesting they may have a good affinity for binding to the DPol and A42R proteins of MPXV respectively. MD simulations confirmed the stability of these ligand-protein complexes followed by evaluation of the ADMET and oral bioavailability analysis. However, it is important that computational methods can suggest promising candidates,in vitroand eventuallyin vivostudies are essential to validate these therapeutic candidates. Further studies on these compounds will provide insights into their efficacy, safety, and potential side effects. In conclusion, this study offers promising avenues for developing potential treatments for Monkeypox. If the identified compounds prove effective in further studies, it could be a significant breakthrough in managing this zoonotic disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3