Insulin-Independent Regulation of Type 1 Diabetes via Brown Adipocyte-Secreted Proteins and the Novel Glucagon Regulator Nidogen-2

Author:

Lee JeongminORCID,Ustione Alessandro,Wilkerson Emily M,Balakrishnan Rekha,Thurmond Debbie C.,Goldfarb Dennis,Piston David W.ORCID

Abstract

SUMMARYCurrent treatments for type 1 diabetes (T1D) focus on insulin replacement. We demonstrate the therapeutic potential of a secreted protein fraction from embryonic brown adipose tissue (BAT), independent of insulin. The large molecular weight secreted fraction mediates insulin receptor-dependent recovery of euglycemia in a T1D animal model, nonobese diabetic (NOD) mice, by suppressing glucagon secretion. This fraction also promotes white adipocyte differentiation and browning, maintains healthy BAT, and enhances glucose uptake in adipose tissue, skeletal muscle, and liver. From this fraction, we identify nidogen-2 as a critical BAT-secreted protein that reverses hyperglycemia in NOD mice, inhibits glucagon secretion from pancreatic α-cells, and mimics other actions of the entire secreted fraction. These findings confirm that BAT transplants affect physiology and demonstrate that BAT-secreted peptides represent a novel therapeutic approach to diabetes management. Furthermore, our research reveals a novel signaling role for nidogen-2, beyond its traditional classification as an extracellular matrix protein.HIGHLIGHTSThe large molecular weight brown adipocyte-secreted protein fraction suppresses glucagon secretion and normalizes glycemia in mouse models of type 1 diabetes (T1D), independent of insulin, offering a novel therapeutic strategy for disease management.Nidogen-2, a critical component of this fraction, is identified as an inhibitor of glucagon secretion in pancreatic α-cells by regulating intracellular messenger activities.The large-secreted protein fraction prevents T1D-related whitening of brown adipose tissue, promotes adipocyte differentiation, and enhances browning of inguinal white adipose tissue.This fraction enhances glucose uptake in adipose tissue, skeletal muscle, and liver through an insulin receptor-dependent pathway.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3