Leveraging Pretrained Models for Multimodal Medical Image Interpretation: An Exhaustive Experimental Analysis

Author:

Fagbola Temitayo MatthewORCID,Success Igwebuike

Abstract

AbstractArtificial intelligence (AI) in radiology, particularly pretrained machine learning models, holds promise for overcoming image interpretation complexities and improving diagnostic accuracy. Although extensive research highlights their potential, challenges remain in adapting these models for generalizability across diverse medical image modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X-rays. Most importantly, limited generalizability across image modalities hinders their real-world application in diverse medical settings. This study addresses this gap by investigating the effectiveness of pretrained models in interpreting diverse medical images. We evaluated ten state-of-the-art convolutional neural network (CNN) models, including ConvNeXtBase, EfficientNetB7, VGG architectures (VGG16, VGG19), and InceptionResNetV2, for their ability to classify multimodal medical images from brain MRI, kidney CT, and chest X-ray (CXR) scans. Our evaluation reveals VGG16’s superior generalizability across diverse modalities, achieving accuracies of 96% for brain MRI, 100% for kidney CT, and 95% for CXR. Conversely, EfficientNetB7 excelled in brain MRI with 96% accuracy but showed limited generalizability to kidney CT (56% accuracy) and CXR (33% accuracy), suggesting its potential specialization for MRI tasks. Future research should enhance the generalizability of pretrained models across diverse medical image modalities. This includes exploring hybrid models, advanced training techniques, and utilizing larger, more diverse datasets. Integrating multimodal information, such as combining imaging data with patient history, can further improve diagnostic accuracy. These efforts are crucial for deploying robust AI systems in real-world medical settings, ultimately improving patient outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3