Using dynamic ultrasound to assess Achilles tendon mechanics during running: the effect on running pattern and muscle-tendon junction tracking

Author:

Schallig WouterORCID,Sloot Ytjanda,van der Schaaf Milou M.,Bus Sicco A.

Abstract

ABSTRACTAchilles tendon strain can be quantified using dynamic ultrasound, but its use in running is limited. Minimal effects on running pattern and acceptable test-retest reliability of muscle-tendon junction (MTJ) tracking are prerequisites for ultrasound use during running. We aimed to assess (i) the effect of wearing an ultrasound transducer on running pattern and (ii) the test-retest reliability of MTJ tracking during running. Sixteen long-distance runners (nine injury-free, seven with Achilles tendinopathy) ran at different speeds on an instrumented treadmill with a 10-camera system tracking skin-mounted retroreflective markers, first without and then with an ultrasound transducer attached to the lower leg to track the MTJ of the gastrocnemius medialis. Spatiotemporal parameters, joint kinematics and kinetics were compared between conditions using mixed ANOVAs and paired t-tests. MTJ tracking was performed manually twice by three raters in ten participants. Variability and standard error of measurement (SEM) quantified the inter- and intra-tester test-retest reliability. The running pattern was not affected by wearing the ultrasound transducer, except for significantly less knee flexion during midstance (1.6°) and midswing (2.9°) found when wearing the transducer. Inter-rater and intra-rater SEMs for MTJ tracking to assess the tendon strain (0.43%, and 0.56%, respectively) were about four times as low as between-group differences presented in literature. The minimal effects found on the running pattern and acceptable test-retest reliability indicates that dynamic ultrasound during running can be appropriately used to study Achilles tendon mechanics and thereby help improve our understanding of Achilles tendon behavior during running, injury development and recovery.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3