A hollow fiber membrane-based liver organoid-on-a-chip model for examining drug metabolism and transport
Author:
Myszczyszyn AdamORCID, Münch Anna, Lehmann VivianORCID, Sinnige Theo, van Steenbeek Frank G.ORCID, Bouwmeester ManonORCID, Samsom Roos-Anne, Keuper-Navis MaritORCID, van der Made Thomas K., Kogan Daniel, Braem Sarah, van der Laan Luc J. W.ORCID, Amirabadi Hossein EslamiORCID, van de Steeg Evita, Masereeuw RosalindeORCID, Spee BartORCID
Abstract
AbstractLiver-on-a-chip models predictive for both metabolism as well as canalicular and blood transport of drug candidates in humans are lacking. Here, we established an advanced, bioengineered and animal component-free hepatocyte-like millifluidic system based on 3D hollow fiber membranes (HFMs), recombinant human laminin 332 coating and adult human stem cell-derived organoids. Organoid fragments formed polarized and tight monolayers on HFMs with improved hepatocyte-like maturation, as compared to standard 3D organoid cultures in Matrigel from matched donors. Gene expression profiling and immunofluorescence revealed that hepatocyte-like monolayers expressed a broad panel of phase I (e.g., CYP3A4, CYP2D6) and II (UGTs, SULTs) drug-metabolizing enzymes and drug transporters (e.g., OATP1B3, MDR1 and MRP3). Moreover, statically cultured monolayers displayed phase I and II metabolism of a cocktail of six relevant compounds, including midazolam and 7-hydroxycoumarin. We also demonstrated the disposition of midazolam in the basal/blood-like circulation and apical/canalicular-like compartment of the millifluidic chip. Finally, we connected the system to the other two PK/ADME-most relevant organ systems,i.e.small intestine- and kidney proximal tubule-like to study the bioavailability of midazolam and coumarin, and excretion of metformin. In conclusion, we generated a proof-of-concept liver organoid-on-a-chip model for examining metabolism and transport of drugs, which can be further developed to predict PK/ADME profiles in humans.
Publisher
Cold Spring Harbor Laboratory
Reference77 articles.
1. M. J. Waring , J. Arrowsmith , A. R. Leach , P. D. Leeson , S. Mandrell , R. M. Owen , G. Pairaudeau , W. D. Pennie , S. D. Pickett , J. Wang , O. Wallace , A. Weir , Nat. Rev. Drug Discov. 2015 147 2015, 14, 475. 2. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials 3. D. M. Stresser , A. K. Kopec , P. Hewitt , R. N. Hardwick , T. R. Van Vleet , P. K. S. Mahalingaiah , D. O’Connell , G. J. Jenkins , R. David , J. Graham , D. Lee , J. Ekert , A. Fullerton , R. Villenave , P. Bajaj , J. R. Gosset , S. L. Ralston , M. Guha , A. Amador-Arjona , K. Khan , S. Agarwal , C. Hasselgren , X. Wang , K. Adams , G. Kaushik , A. Raczynski , K. A. Homan , Nat. Biomed. Eng. 2023 2023, 1. 4. H. Musther , A. Olivares-Morales , O. J. D. Hatley , B. Liu , A. Rostami Hodjegan , Eur. J. Pharm. Sci. 2014, 57, 280. 5. S. Fowler , W. L. K. Chen , D. B. Duignan , A. Gupta , N. Hariparsad , J. R. Kenny , W. G. Lai , J. Liras , J. A. Phillips , J. Gan , Lab Chip 2020, 20, 446.
|
|