NewZNHIT3Variants Disrupting snoRNP Assembly Cause Prenatal PEHO Syndrome with Isolated Hydrops

Author:

Rahman Md Lutfur,Bonnard Adeline A.,Wang Feng,Ruaud Lyse,Guimiot Fabien,Li Yangping,Defer Ines,Wang Yilin,Marchand Virginie,Motorin Yuri,Yao Bing,Drunat Séverine,Ghalei HomaORCID

Abstract

AbstractZNHIT3 (zinc finger HIT type containing protein 3) is an evolutionarily conserved protein required for ribosome biogenesis by mediating the assembly of small nucleolar RNAs (snoRNAs) of class C/D into ribonucleoprotein complexes (snoRNPs). Missense mutations in the gene encoding ZNHIT3 protein have been previously reported to cause PEHO syndrome, a severe neurodevelopmental disorder typically presenting after birth. We discuss here the case of two fetuses from a single family who presented with isolated hydrops during the early second trimester of pregnancy, resulting in intrauterine demise. Autopsy revealed no associated malformation. Through whole-genome quartet analysis, we identified two novel variants within theZNHIT3gene, both inherited from healthy parents and occurring as compound heterozygotes in both fetuses. The c.40T>C p.Cys14Arg variant originated from the father, while the c.251_254delAAGA variant was of maternal origin. Analysis of the variants in human cell culture models reveals that both variants reduce cell growth, albeit to different extents, and impact the protein’s stability and function in distinct ways. The c.251_254delAAGA results in production of a stable form of ZNHIT3 that lacks a domain required for mediating snoRNP biogenesis, whereas the c.40T>C p.Cys14Arg variation behaves similarly to the previously described PEHO-associatedZNHIT3variants that destabilize the protein. Interestingly, both variations lead to a marked decrease in specific box C/D snoRNA levels, reduced rRNA levels and cellular translation. Analysis of rRNA methylation pattern in fetus samples reveals distinct sites of hypo 2’-O-methylation. RNA-seq analysis of undifferentiated and differentiated SHSY5Y cells transfected with theZNHIT3variants reveals differential expression of a set of genes, many of which are associated with developmental processes and RNA binding compared to cells expressing wild-type ZNHIT3. In summary, this work extends the phenotype of PEHO syndrome to include antenatal manifestations and describe the molecular defects induced by two novelZNHIT3variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3