A scalable approach for genome-wide inference of ancestral recombination graphs

Author:

Gunnarsson Árni FreyrORCID,Zhu JiazhengORCID,Zhang Brian C.ORCID,Tsangalidou Zoi,Allmont Alex,Palamara Pier FrancescoORCID

Abstract

AbstractThe ancestral recombination graph (ARG) is a graph-like structure that encodes a detailed genealogical history of a set of individuals along the genome. ARGs that are accurately reconstructed from genomic data have several downstream applications, but inference from data sets comprising millions of samples and variants remains computationally challenging. We introduce Threads, a threading-based method that significantly reduces the computational costs of ARG inference while retaining high accuracy. We apply Threads to infer the ARG of 487,409 genomes from the UK Biobank using ∼10 million high-quality imputed variants, reconstructing a detailed genealogical history of the samples while compressing the input genotype data. Additionally, we develop ARG-based imputation strategies that increase genotype imputation accuracy for ultra-rare variants (MAC ≤10) from UK Biobank exome sequencing data by 5-10%. We leverage ARGs inferred by Threads to detect associations with 52 quantitative traits in non-European UK Biobank samples, identifying 22.5% more signals than ARG-Needle. These analyses underscore the value of using computationally efficient genealogical modeling to improve and complement genotype imputation in large-scale genomic studies.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Properties of a neutral allele model with intragenic recombination;Theore&cal Popula&on Biology,1983

2. Ancestral Inference from Samples of DNA Sequences with Recombination;Journal of Computa&onal Biology,1996

3. Griffiths, R.C. & Marjoram, P. An ancestral recombination graph. Progress in popula&on gene&cs and human evolu&on, 257–270 (1997).

4. Generating samples under a Wright-Fisher neutral model of genetic variation;Bioinforma&cs,2002

5. Cosi2: an efficient simulator of exact and approximate coalescent with selection;Bioinforma&cs,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3