A transgene-free, human peri-gastrulation embryo model with trilaminar embryonic disc-, amnion- and yolk sac-like structures

Author:

Sun ShiyuORCID,Zheng Yi,Kim Yung Su,Zhong Zheng,Kobayashi Norio,Xue Xufeng,Liu Yue,Zhou Zhuowei,Xu Yanhong,Zhai Jinglei,Wang HongmeiORCID,Fu JianpingORCID

Abstract

The ultimate outcome of the gastrulation in mammalian development is a recognizable trilaminar disc structure containing organized cell lineages with spatially defined identities in an emerging coordinate system1–4. Despite its importance in human development, gastrulation remains difficult to study. Stem cell-based embryo models, including those that recapitulate different aspects of pre- and peri-gastrulation human development5–15, are emerging as promising tools for studying human embryogenesis16–18. However, it remains unclear whether existing human embryo models are capable of modeling the development of the trilaminar embryonic disc structure, a hallmark of human gastrulation. Here we report a transgene-free human embryo model derived solely from primed human pluripotent stem cells (hPSCs), which recapitulates various aspects of peri-gastrulation human development, including formation of trilaminar embryonic layers situated between dorsal amnion and ventral definitive yolk sac and primary hematopoiesis. We term this model the peri-gastrulation trilaminar embryonic disc (PTED) embryoid. The development of PTED embryoid does not follow natural developmental sequences of cell lineage diversification or spatial organization. Instead, it exploits both extrinsic control of tissue boundaries and intrinsic self-organizing properties and embryonic plasticity of the diverse peri-gastrulation-stage cell lineages, leading to the emergence ofin vivo-like tissue organization and function at a global scale. Our lineage tracing study reveals that in PTED embryoids, embryonic and extraembryonic mesoderm cells, as well as embryonic and extraembryonic endoderm cells, share common progenitors emerging during peri-gastrulation development. Active hematopoiesis and blood cell generation are evident in the yolk sac-like structure of PTED embryoids. Together, PTED embryoids provide a promising and ethically less challenging model for studying self-organizing properties of peri-gastrulation human development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3