Neuronal basis of audio-tactile speech perception

Author:

Cieśla Katarzyna,Wolak Tomasz,Amedi Amir

Abstract

AbstractSince childhood, we experience speech as a combination of audio and visual signals, with visual cues particularly beneficial in difficult auditory conditions. This study investigates an alternative multisensory context of speech, and namely audio-tactile, which could prove beneficial for rehabilitation in the hearing impaired population. We show improved understanding of distorted speech in background noise, when combined with low-frequency speech-extracted vibrotactile stimulation delivered on fingertips. The quick effect might be related to the fact that both auditory and tactile signals contain the same type of information. Changes in functional connectivity due to audio-tactile speech training are primarily observed in the visual system, including early visual regions, lateral occipital cortex, middle temporal motion area, and the extrastriate body area. These effects, despite lack of visual input during the task, possibly reflect automatic involvement of areas supporting lip-reading and spatial aspects of language, such as gesture observation, in difficult acoustic conditions. For audio-tactile integration we show increased connectivity of a sensorimotor hub representing the entire body, with the parietal system of motor planning based on multisensory inputs, along with several visual areas. After training, the sensorimotor connectivity increases with high-order and language-related frontal and temporal regions. Overall, the results suggest that the new audio-tactile speech task activates regions that partially overlap with the established brain network for audio-visual speech processing. This further indicates that neuronal plasticity related to perceptual learning is first built upon an existing structural and functional blueprint for connectivity. Further effects reflect task-specific behaviour related to body and spatial perception, as well as tactile signal processing. Possibly, a longer training regime is required to strengthen direct pathways between the auditory and sensorimotor brain regions during audio-tactile speech processing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3