Quantifying microbial fitness in high-throughput experiments

Author:

Fink Justus WilhelmORCID,Manhart MichaelORCID

Abstract

Few concepts are as central to evolution as is fitness, and yet the quantification of fitness is often ambiguous. In particular, high-throughput experiments to measure mutant fitness in microbes are increasingly common but vary widely in their definitions of fitness, which makes their results difficult to compare. What are the consequences of these different fitness statistics, and is there a best way to quantify fitness in a given context? Here we systematize the set of possible fitness statistics according to the following three choices: 1) the encoding of relative abundance (e.g., transforming by a log or logit function), 2) the time scale over which to measure the change in relative abundance, and 3) the choice of a reference subpopulation for calculating fitness in bulk competition experiments, such as those using DNA-barcoded mutants. We show that these different choices can lead to significantly different interpretations of mutant fitness, affecting the magnitude of fitness effects, the presence of epistasis, and even the fitness ranking across mutants. This can confound predictions for evolutionary dynamics and gene functions. Altogether our results demonstrate the importance of consistent fitness definitions for reproducible results across experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3