NMR structures and magnetic force spectroscopy studies of small molecules binding to models of an RNA CAG repeat expansion

Author:

Taghavi Amirhossein,Chen Jonathan L.,Wang Zhen,Sinnadurai Krishshanthi,Salthouse David,Ozon Matthew,Feri Adeline,Fountain Matthew A.,Choudhary Shruti,Childs-Disney Jessica L.,Disney Matthew D.ORCID

Abstract

ABSTRACTRNA repeat expansions fold into stable structures and cause microsatellite diseases such as Huntington’s disease (HD), myotonic dystrophy type 1 (DM1), and spinocerebellar ataxias (SCAs). The trinucleotide expansion of r(CAG), or r(CAG)exp, causes both HD and SCA3, and the RNA’s toxicity has been traced to its translation into polyglutamine (polyQ; HD) as well as aberrant pre-mRNA alternative splicing (SCA3 and HD). Previously, a small molecule,1, was discovered that binds to r(CAG)expand rescues aberrant pre-mRNA splicing in patient-derived fibroblasts by freeing proteins bound to the repeats. Here, we report the structures of single r(CAG) repeat motif (5’CAG/3’GAC where the underlined adenosines form a 1×1 nucleotide internal loop) in complex with1and two other small molecules via nuclear magnetic resonance (NMR) spectroscopy combined with simulated annealing. Compound2was designed based on the structure of1bound to the RNA while3was selected as a diverse chemical scaffold. The three complexes, although adopting different 3D binding pockets upon ligand binding, are stabilized by a combination of stacking interactions with the internal loop’s closing GC base pairs, hydrogen bonds, and van der Waals interactions. Molecular dynamics (MD) simulations performed with NMR-derived restraints show that the RNA is stretched and bent upon ligand binding with significant changes in propeller-twist and opening. Compound3has a distinct mode of binding by insertion into the helix, displacing one of the loop nucleotides into the major groove and affording a rod-like shape binding pocket. In contrast,1and2are groove binders. A series of single molecule magnetic force spectroscopy studies provide a mechanistic explanation for how bioactive compounds might rescue disease-associated cellular phenotypes.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3