Trophic transfer and bioaccumulation of nanoplastics inCoryphaena hippurus(Mahi-mahi) and effect of depuration

Author:

Dey PreyojonORCID,Bradley Terence M.,Boymelgreen AliciaORCID

Abstract

AbstractOcean plastic pollution is a global concern, exacerbated by the distinctive physiochemical characteristics of nanoplastics (NPs), making it crucial to study the impacts on marine animals. While most studies focus on the impacts of waterborne NP exposure, trophic transfer is another key transport mechanism that may also provide insight into the potential transfer of NPs to humans through the food chain. This study investigates polystyrene NP transfer toCoryphaena hippurus(mahi-mahi) larvae, a widely consumed fish and significant marine predator, during the early life stage. Using a two-step food chain,Brachionus plicatilis(rotifers) were exposed to NPs, and subsequently fed toC. hippuruslarvae, with exposure durations ranging from 24 to 96 h. Significant NP transfer was observed via the food chain, varying with exposure duration. A depuration study over 72 h, simulating environmental intermittent NP exposure, revealed substantial NP excretion but also notable retention in the larvae. Biodistribution analysis indicated that most NPs accumulated in the gut, with a significant portion remaining post-depuration and some translocating to other body parts. Despite no significant effects on body length and eye diameter during this short study period, histopathological analysis revealed intestinal tissue damage in the larvae.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3