A latent outcome variable approach for Mendelian randomization using the expectation maximization algorithm

Author:

Amente Lamessa Dube,Mills Natalie TORCID,Le Thuc Duy,Hyppönen ElinaORCID,Lee S HongORCID

Abstract

AbstractMendelian randomization (MR) is a widely used tool to uncover causal relationships between exposures and outcomes. However, existing MR methods can suffer from inflated type I error rates and biased causal effects in the presence of invalid instruments. Our proposed method enhances MR analysis by augmenting latent phenotypes of the outcome, explicitly disentangling horizontal and vertical pleiotropy effects. This allows for explicit assessment of the exclusion restriction assumption and iteratively refines causal estimates through the expectation-maximization algorithm. This approach offers a unique and potentially more precise framework compared to existing MR methods. We rigorously evaluate our method against established MR approaches across diverse simulation scenarios, including balanced and directional pleiotropy, as well as violations of the Instrument Strength Independent of Direct Effect (InSIDE) assumption. Our findings consistently demonstrate superior performance of our method in terms of controlling type I error rates, bias, and robustness to genetic confounding. Additionally, our method facilitates testing for directional horizontal pleiotropy and outperforms MR-Egger in this regard, while also effectively testing for violations of the InSIDE assumption. We apply our method to real data, demonstrating its effectiveness compared to traditional MR methods. This analysis reveals the causal effects of body mass index (BMI) on metabolic syndrome (MetS) and a composite MetS score calculated by the weighted sum of its component factors. While the causal relationship is consistent across most methods, our proposed method shows fewer violations of the exclusion restriction assumption, especially for MetS scores where horizontal pleiotropy persists and other methods suffer from inflation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3