Autoencoders with shared and specific embeddings for multi-omics data integration

Author:

Wang Chao,O’Connell Michael J.ORCID

Abstract

AbstractMotivationIn cancer research, different levels of high-dimensional data are often collected for the same subjects. Effective integration of these data by considering the shared and specific information from each data source can help us better understand different types of cancer.ResultsIn this study we propose a novel autoencoder (AE) structure with explicitly defined orthogonal loss between the shared and specific embeddings to integrate different data sources. We compare our model with previously proposed AE structures based on simulated data and real cancer data from The Cancer Genome Atlas. Using simulations with different proportions of differentially expressed genes, we compare the performance of AE methods for subsequent classification tasks. We also compare the model performance with a commonly used dimension reduction method, joint and individual variance explained. In terms of reconstruction loss, our proposed AE models with orthogonal constraints have a slightly better reconstruction loss. All AE models achieve higher classification accuracy than the original features, demonstrating the usefulness of the embeddings extracted by the model. Particularly, we show that the proposed models have consistently high classification accuracy on both training and testing sets. In comparison, the recently proposed MOCSS model that imposes an orthogonality penalty in the post-processing step has lower classification accuracy that is on par with JIVE.Availability and ImplementatioThe relevant datasets and models developed in this study are available in the following GitHub repository:https://github.com/wangc90/AE_Data_Integration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3