Center of mass states render multi-joint torques throughout standing balance recovery

Author:

Jakubowski Kristen L.ORCID,Martino GiovanniORCID,Beck Owen N.,Sawicki Gregory S.,Ting Lena H.ORCID

Abstract

ABSTRACTSuccessful reactive balance control requires coordinated modulation of hip, knee, and ankle torques. Stabilizing joint torques arise from feedforward neural signals that modulate the musculoskeletal system’s intrinsic mechanical properties, namely muscle short-range stiffness, and neural feedback pathways that activate muscles in response to sensory input. Although feedforward and feedback pathways are known to modulate the torque at each joint, the role of each pathway to the balance-correcting response across joints is poorly understood. Since the feedforward and feedback torque responses act at different delays following perturbations to balance, we modified the sensorimotor response model (SRM), previously used to analyze the muscle activation response to perturbations, to consist of parallel feedback loops with different delays. Each loop within the model is driven by the same information, center of mass (CoM) kinematics, but each loop has an independent delay. We evaluated if a parallel loop SRM could decompose the reactive torques into the feedforward and feedback contributions during balance-correcting responses to backward support surface translations at four magnitudes. The SRM accurately reconstructed reactive joint torques at the hip, knee, and ankle, across all perturbation magnitudes (R2>0.84 & VAF>0.83). Moreover, the hip and knee exhibited feedforward and feedback components, while the ankle only exhibited feedback components. The lack of a feedforward component at the ankle may occur because the compliance of the Achilles tendon attenuates muscle short-range stiffness. Our model may provide a framework for evaluating changes in the feedforward and feedback contributions to balance that occur due to aging, injury, or disease.NEWS AND NOTEWORTHYReactive balance control requires coordination of neurally-mediated feedforward and feedback pathways to generate stabilizing joint torques at the hip, knee, and ankle. Using a sensorimotor response model, we decomposed reactive joint torques into feedforward and feedback contributions based on delays relative to center of mass kinematics. Responses across joints were driven by the same signals, but contributions from feedforward versus feedback pathways differed, likely due to differences in musculotendon properties between proximal and distal muscles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3