SPACE: Spatially variable gene clustering adjusting for cell type effect for improved spatial domain detection

Author:

Das Adhikari SiktaORCID,Steele Nina G.ORCID,Theisen BrianORCID,Wang JianrongORCID,Cui YuehuaORCID

Abstract

AbstractRecent advances in spatial transcriptomics have significantly deepened our understanding of biology. A primary focus has been identifying spatially variable genes (SVGs) which are crucial for downstream tasks like spatial domain detection. Traditional methods often use all or a set number of top SVGs for this purpose. However, in diverse datasets with many SVGs, this approach may not ensure accurate results. Instead, grouping SVGs by expression patterns and using all SVG groups in downstream analysis can improve accuracy. Furthermore, classifying SVGs in this manner is akin to identifying cell type marker genes, offering valuable biological insights. The challenge lies in accurately categorizing SVGs into relevant clusters, aggravated by the absence of prior knowledge regarding the number and spectrum of spatial gene patterns. Addressing this challenge, we propose SPACE, SPatially variable gene clustering Adjusting for Cell type Effect, a framework that classifies SVGs based on their spatial patterns by adjusting for confounding effects caused by shared cell types, to improve spatial domain detection. This method does not require prior knowledge of gene cluster numbers, spatial patterns, or cell type information. Our comprehensive simulations and real data analyses demonstrate that SPACE is an efficient and promising tool for spatial transcriptomics analysis.Key PointsSPACE eliminates the need for prior knowledge about the number of gene clusters, known cell types, or the quantity of SVGs to identify clusters for downstream analysis.SPACE offers a method to effectively leverage SVGs for low-dimensional embedding within each cluster to improve the accuracy of spatial domain detection.The efficiency and utility of the SPACE algorithm have been validated across multiple datasets and simulations, demonstrating its effectiveness in producing meaningful and interpretable results.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3