PLSKO: a robust knockoff generator to control false discovery rate in omics variable selection

Author:

Yang GuannanORCID,Menkhorst EllenORCID,Dimitriadis EvdokiaORCID,Lê Cao Kim-AnhORCID

Abstract

AbstractThe knockoff framework, combined with variable selection procedure, controls false discovery rate (FDR) without the need for calculatingp−values. Hence, it presents an attractive alternative to differential expression analysis of high-throughput biological data. However, current knockoff variable generators make strong assumptions or insufficient approximations that lead to FDR inflation when applied to biological data.We propose Partial Least Squares Knockoff (PLSKO), an efficient and assumption-free knockoff generator that is robust to varying types of biological omics data. We compare PLSKO with a wide range of existing methods. In simulation studies, we show that PLSKO is the only method that controls FDR with sufficient statistical power in complex non-linear cases. In semi-simulation studies based on real data, we show that PLSKO generates valid knockoff variables for different types of biological data, including RNA-seq, proteomics, metabolomics and microbiome. In preeclampsia multi-omics case studies, we combined PLSKO with Aggregation Knockoff to address the randomness of knockoffs and improve power, and show that our method is able to select variables that are biologically relevant.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3