Individual cases of Parkinson’s disease can be robustly classified by cortical oscillatory activity from magnetoencephalography

Author:

Roberts Gillian,Hardy Samuel,Chen RobertORCID,Dunkley Benjamin TORCID,

Abstract

AbstractParkinson’s disease (PD) is a progressive neurodegenerative disorder which causes debilitating symptoms in both the motor and cognitive domains. The neurophysiological markers of PD include ‘oscillopathies’ such as diffuse neural oscillatory slowing, dysregulated beta band activity, and changes in interhemispheric functional connectivity; however, the relative importance of these markers as determinants of disease status is not clear. In this study, we used resting state magnetoencephalography data (n = 199 participants, 78 PD, 121 controls) from the open OMEGA repository to investigate changes in spectral power and functional networks in PD. Using a Contrast of Parameter Estimates (COPE) approach, we modelled the effects of PD while controlling for population-level confounds (age, sex, brain volume). Permutation testing revealed highly significant increases in theta (p=0.0001) and decreases in gamma band spectral power (p=0.0001). Building on the group contrast results, we investigated the ability of source-resolved MEG data to distinguish PD from healthy controls. Our approach uses a Partial Least Squares (PLS)-based classifier to find linear combinations of MEG features which independently predict PD. We found MEG-based predictions to be highly sensitive and specific, reaching an optimal AUC-ROC of 0.87 ± 0.04 using a model including spectral power features with 4 independent PLS components, compared to 0.68 ± 0.04 when using functional connectivity. Interpretation of the model weights suggests that oscillatory slowing can be separated into independent posterior theta and global diffuse delta components that can robustly identify individual cases of PD with a high degree of accuracy. This suggests MEG can reveal dissociable, complementary neural processes which contribute to PD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3