Perturbation ofde novolipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles

Author:

Soultsioti M.,de Jong A.W.M.,Blomberg N.,Tas A.,Giera M.ORCID,Snijder E. J.ORCID,Barcena M.ORCID

Abstract

AbstractCoronaviruses hijack host cell metabolic pathways and resources to support their replication. They induce extensive host endomembrane remodeling to generate viral replication organelles, and exploit host membranes for assembly and budding of their enveloped progeny virions. Because of the overall significance of host membranes, we sought to gain insight into the role of host factors involved in lipid metabolism in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV). We employed a single-cycle infection approach in combination with pharmacological inhibitors, biochemical assays, lipidomics, light and electron microscopy. Pharmacological inhibition of acetyl-CoA carboxylase (ACC) and fatty acid synthase (FASN), key host factors inde novofatty acid biosynthesis, led to pronounced inhibition of MERS-CoV particle release. Inhibition of ACC led to a profound metabolic switch in Huh7 cells, altering their lipidomic profile and inducing lipolysis. However, despite the extensive changes induced by the ACC inhibitor, the biogenesis of viral replication organelles remained unaffected. Moreover, compound treatment triggered various simultaneous changes in the post-translational modifications of MERS-CoV envelope proteins, in addition to influencing their subcellular localization. Electron microscopy revealed an accumulation of nucleocapsids in early budding stages, indicating that MERS-CoV assembly is adversely impacted by ACC inhibition. Notably, inhibition of palmitoylation resulted in similar effects, while supplementation of exogenous palmitic acid reversed the compound’s inhibitory effects, possibly reflecting a crucial need for palmitoylation of the MERS-CoV Spike and Envelope proteins for their role in virus particle assembly.ImportanceMiddle East respiratoryspiratory syndrome coronavirus (MERS-CoV) is the etiological agent of a zoonotic respiratory disease of limited transmissibility between humans. However, MERS-CoV is still considered a high-priority pathogen and is closely monitored by WHO due to its high lethality rate of around 35% of laboratory-confirmed infections. Like other positive-strand RNA viruses, MERS-CoV relies on the host cell’s endomembranes to support various stages of its replication cycle. However, in spite of this general reliance of MERS-CoV replication on host cell lipid metabolism, mechanistic insights are still very limited. In our study, we show that pharmacological inhibition of acetyl-CoA carboxylase (ACC), a key enzyme in the host cell’s fatty acid biosynthesis pathway, significantly disrupts MERS-CoV particle assembly without exerting a negative effect on the biogenesis of viral replication organelles. Furthermore, our study highlights the potential of ACC as a target for the development of host-directed antiviral therapeutics against coronaviruses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3