Too hot to handle? The impact of the 2023 marine heatwave on Florida Keys coral

Author:

Neely Karen L.ORCID,Nowicki Robert J.,Dobler Michelle A.,Chaparro Arelys A.,Miller Samantha M.,Toth Kathryn A.

Abstract

AbstractThe marine heatwave in the summer of 2023 was the most severe on record for Florida’s Coral Reef, with unprecedented water temperatures and cumulative thermal stress precipitating near 100% coral bleaching levels. An existing SCTLD coral fate-tracking program assessed over 4200 coral colonies across five offshore and four inshore reef sites approximately every two months, allowing for analyses of bleaching-related mortality and diseases during and after the marine heatwave. Across the vast majority of assessed corals, including multiple sites and species, there was no partial or full mortality as a result of the 2023 bleaching event. The two sites that did experience substantial bleaching-related mortality were those experiencing the highest levels of cumulative thermal stress. However, the substantial acute mortality at one of them occurred at relatively low levels of cumulative stress, suggesting death was the result of exceeding thermal maxima. At the two sites with notable mortality, 43% and 24% of all monitored corals died, but mortality varied among species. Brain corals fared worse than boulder corals, withPseudodiploria strigosathe most heavily impacted species. The health status of corals before the bleaching event had little impact on whether they experienced disease or bleaching-related mortality during the event. At three sites, we observed unusual lesions onOrbicella faveolatacolonies shortly after color returned to the corals; the lesions were only observed for a few months but on some colonies led to substantial tissue loss. Though not part of the coral monitoring program, we also observed substantial losses and local extinctions of Acroporid corals at most sites, as well as probable local extinctions of octocorals at three of the four inshore reefs. Though most reef-building corals came through the 2023 event with no mortality, continually rising temperatures are likely to make these temperature regimes more common and widespread. We encourage future research on what the unusualO. faveolatalesions are, and why the brain and boulder corals fared differently at highly-impacted sites. Our results also provide perspective on how restoration strategies, particularly those focused on species likely to die under current and future climate regimes, should consider shifting focus to species likely to survive. Finally, these results highlight the importance of this type of monitoring, with a focus on fate-tracking individuals through disturbance events, including a large number of individuals of multiple species across a geographic range and multiple habitats.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3