Abstract
The multidimensional nature of schizophrenia requires a comprehensive exploration of the functional and structural brain networks. While prior research has provided valuable insights into these aspects, our study goes a step further to investigate the reconfiguration of the hierarchy of brain dynamics, which can help understand how brain regions interact and coordinate in schizophrenia. We applied an innovative thermodynamic framework, which allows for a quantification of the degree of functional hierarchical organization by analysing resting state fMRI-data. Our findings reveal increased hierarchical organization at the whole-brain level and within specific resting-state networks in individuals with schizophrenia, which correlated with negative symptoms, positive formal thought disorder and apathy. Moreover, using a machine learning approach, we showed that hierarchy measures allow a robust diagnostic separation between healthy controls and schizophrenia patients. Thus, our findings provide new insights into the nature of functional connectivity anomalies in schizophrenia, suggesting that they could be caused by the breakdown of the functional orchestration of brain dynamics.
Publisher
Cold Spring Harbor Laboratory