mCLAS adaptively rescues disease-specific sleep and wake phenotypes in neurodegeneration

Author:

Dias InêsORCID,Baumann Christian R.,Noain DanielaORCID

Abstract

AbstractSleep alterations are hallmarks of prodromal Alzheimer’s (AD) and Parkinson’s disease (PD), with fundamental neuropathological processes of both diseases showing susceptibility of change upon deep sleep modulation. However, promising pharmacological deep sleep enhancement results are hindered by specificity and scalability issues, thus advocating for noninvasive slow-wave activity (SWA) boosting methods to investigate the links between deep sleep and neurodegeneration. Accordingly, we have recently introduced mouse closed-loop auditory stimulation (mCLAS), which is able to successfully boost SWA during deep sleep in neurodegeneration models. Here, we aim at further exploring mCLAS’ acute effect onto disease-specific sleep and wake alterations in AD (Tg2576) and PD (M83) mice. We found that mCLAS adaptively rescues pathological sleep and wake traits depending on the disease-specific impairments observed at baseline in each model. Notably, in AD mice mCLAS significantly increases NREM long/short bout ratio, decreases vigilance state distances by decreasing transition velocities and increases the percentage of cumulative time spent in NREM sleep in the last three hours of the dark period. Contrastingly, in PD mice mCLAS significantly decreases NREM sleep consolidation, by potentiating faster and more frequent transitions between vigilance states, decreases average EMG muscle tone during REM sleep and increases alpha power in WAKE and NREM sleep. Overall, our results indicate that mCLAS selectively prompts an acute alleviation of neurodegeneration-associated sleep and wake phenotypes, by either potentiating sleep consolidation and vigilance state stability in AD or by rescuing bradysomnia and decreasing cortical hyperexcitability in PD. Further experiments assessing the electrophysiological, neuropathological and behavioural long-term effects of mCLAS in neurodegeneration may majorly impact the clinical establishment of sleep-based therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3