Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacteriumSynechocystis sp.PCC 6803

Author:

Reis MaraORCID,Zenker SanjaORCID,Viehöver PriscaORCID,Niehaus KarstenORCID,Bräutigam AndreaORCID,Eisenhut MarionORCID

Abstract

ABSTRACTCellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced within narrow boarders. In cyanobacteria, sufficient Mn supply is critical for assuring the function of the oxygen-evolving complex as central part of the photosynthetic machinery. However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the impact of excess Mn on physiology and global gene expression in the model organismSynechocystissp. PCC 6803. We compared the response of the wild type and the knock-out mutant in the manganese exporter (Mnx), Δmnx,which is disabled in the export of surplus Mn and thus functions as model for toxic Mn overaccumulation. While growth and pigment accumulation in Δmnxwas severely impaired 24 h after addition of 10-fold Mn, the wild type was not affected and thus mounted an adequate transcriptional response. RNA-seq data analysis revealed that the Mn stress transcriptomes were partly resembling an iron limitation transcriptome. However, the expression of iron limitation signature genesisiABDCwas not affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation inSynechocystis.We suggest that the Ferric uptake regulator, Fur, gets partially mismetallated under Mn excess conditions and thus interferes with an iron-dependent transcriptional response. To encounter mismetallation and other Mn-dependent problems on protein level, the cells invest into transcripts of ribosomes, proteases, and chaperones. In case of the Δmnxmutant the consequences of the disability to export excess Mn from the cytosol manifest in additionally impaired energy metabolism and oxidative stress transcriptomes with fatal outcome. This study emphasizes the central importance of Mn homeostasis and the transporter Mnx’s role in restoring and holding it.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3