Forecasting hotspots of grassland suitability under climate change for restoration

Author:

Rana Santosh KumarORCID,Lindstrom Jessica,Lehrer Melissa A.,Ahlering Marissa,Hamilton JillORCID

Abstract

AbstractLocal species-climate relationships are often considered in restoration management. However, as climate change disrupts species-climate relationships, identifying factors that influence habitat suitability now and into the future for individual species, functional groups, and communities will be increasingly important for restoration. This involves identifying hotspots of community suitability to target seed sourcing and restoration efforts.Using ensemble species distribution modeling (eSDM), we analyzed 26 grassland species commonly used in restoration to identify bioclimatic variables influencing their distributions. We predicted habitat suitability under current and future (2050) climates and identified hotspots where diverse species and functional group suitability was greatest. These hotspots of habitat suitability were then overlaid with estimates of landscape connectivity and protected status to quantify potential suitability for restoration now and into the future.Temperature and precipitation during warmer quarters largely influenced grassland species habitat suitability. Hotspots of grassland habitat suitability were identified in Minnesota, North Dakota, and South Dakota, with projected northward shifts under future climate scenarios. Overlaying these hotspots with estimates of landscape connectivity and protected status revealed limited connectivity and protection, highlighting regions to prioritize for restoration and conservation efforts.Leveraging an understanding of species relationship with climate, this research emphasizes the importance of quantifying connectivity and protected status across aggregated hotspots of species suitability for conservation and restoration. Identifying these hotspots now and into the future can be used to prioritize regions for seed sourcing and restoration, ensuring long-term maintenance of functional ecosystems across grassland communities.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3