Exploit Spatially Resolved Transcriptomic Data to Infer Cellular Features from Pathology Imaging Data

Author:

Sui Zhining,Li Ziyi,Sun WeiORCID

Abstract

AbstractDigital pathology is a rapidly advancing field where deep learning methods can be employed to extract meaningful imaging features. However, the efficacy of training deep learning models is often hindered by the scarcity of annotated pathology images, particularly images with detailed annotations for small image patches or tiles. To overcome this challenge, we propose an innovative approach that leverages paired spatially resolved transcriptomic data to annotate pathology images. We demonstrate the feasibility of this approach and introduce a novel transfer-learning neural network model, STpath (Spatial Transcriptomics and pathology images), designed to predict cell type proportions or classify tumor microenvironments. Our findings reveal that the features from pre-trained deep learning models are associated with cell type identities in pathology image patches. Evaluating STpath using three distinct breast cancer datasets, we observe its promising performance despite the limited training data. STpath excels in samples with variable cell type proportions and high-resolution pathology images. As the influx of spatially resolved transcriptomic data continues, we anticipate ongoing updates to STpath, evolving it into an invaluable AI tool for assisting pathologists in various diagnostic tasks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3