Paramagnetic Rim Lesions are Highly Specific for Multiple Sclerosis in Real-World Data

Author:

Hemond Christopher C.ORCID,Dundamadappa Sathish K.,Deshpande Mugdha,Baek Jonggyu,Brown Robert H.,Ionete Carolina,Reich Daniel S.

Abstract

AbstractBackgroundParamagnetic rim lesions (PRL) are an emerging biomarker for multiple sclerosis (MS). In addition to associating with greater disease severity, PRL may be diagnostically supportive.ObjectiveOur aim was to determine PRL specificity and sensitivity for discriminating MS from its diagnostic mimics using real-world clinical diagnostic and imaging data.MethodsThis is a retrospective, cross-sectional analysis of a longitudinal cohort of patients with prospectively collected observational data. Patients were included if they underwent neuroimmunological evaluation in our academic MS center, and had an available MRI scan from the same clinical 3T magnet that included a T2*-weighted sequence with susceptibility postprocessing (SWAN protocol, GE). SWAN-derived filtered phase maps and corresponding T2-FLAIR images were manually reviewed to determine PRL. PRL were categorized as “definite,” “probable,” or “possible” based on modified, recent consensus criteria. We hypothesized that PRL would convey a high specificity to discriminate MS from its MRI mimics.Results580 patients were evaluated in total: 473 with MS, 57 with non-inflammatory neurological disease (NIND), and 50 with other inflammatory neurological disease (OIND). Identification of “definite” or “probable” PRL provided a specificity of 98% to discriminate MS from NIND and OIND; sensitivity was 36%. Interrater agreement was almost perfect for definite/probable identification at a subject level.ConclusionsPRL convey high specificity for MS and can aid in the diagnostic evaluation. Modest sensitivity limits their use as single diagnostic indicators. Including lesions with lower confidence (“possible” PRL) rapidly erodes specificity and should be interpreted with caution given the potential harms associated with misdiagnosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3