Detecting behavioural oscillations with increased sensitivity: A modification of Brookshire’s (2022) AR-surrogate method

Author:

Harris Anthony M.ORCID,Beale Henry A.ORCID

Abstract

AbstractA core challenge of cognitive neuroscience is to understand how cognition changes over time within the same individual. For example, the tendency for behavioural responses in a range of cognitive domains to oscillate over time has been studied extensively. Recently, however, the phenomenon of behavioural oscillations has been called into question by indications that past findings might reflect aperiodic temporal structure rather than true oscillations. Brookshire (2022) proposed methods to control for aperiodic temporal structure while examining oscillations in behavioural time-courses and found no evidence of behavioural oscillations in reanalyses of four published datasets. However, Brookshire’s (2022) method has been criticised for having low sensitivity to detect effects of realistic magnitude, so it is currently unclear whether these findings suggest that behavioural oscillations are not present in these and perhaps many other datasets, or whether they are false negatives. Here, we present a modification of Brookshire’s (2022) AR-surrogate method with increased sensitivity to detect effects of realistic magnitude, adequate control of false positives, and other desirable properties such as the ability to increase statistical power by adding more participants. Using this method, we reanalyse the same publicly available datasets and show significant behavioural oscillations in each of them, suggesting oscillations in behaviour are a robust phenomenon upon which to draw theoretical inferences. The participant-level AR-surrogate method is currently the most sensitive method available for analysing behavioural oscillations while controlling for the contribution of aperiodic data fluctuations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3