vPro-MS enables identification of human-pathogenic viruses from patient samples by untargeted proteomics

Author:

Grossegesse Marica,Horn Fabian,Kurth Andreas,Lasch Peter,Nitsche Andreas,Doellinger Joerg

Abstract

AbstractViral infections are commonly diagnosed by the detection of viral genome fragments or proteins using targeted methods such as PCR and immunoassays. In contrast, metagenomics enables the untargeted identification of viral genomes, expanding its applicability across a broader spectrum. In this study, we introduce proteomics as a complementary approach for the untargeted identification of human-pathogenic viruses from patient samples. The viral proteomics workflow (vPro-MS) is based on anin-silicoderived peptide library covering the human virome in UniProtKB (331 viruses, 20,386 genomes, 121,977 peptides), which was especially designed for diagnostic purposes. A scoring algorithm (vProID score) was developed to assess the confidence of virus identification from proteomics data. In combination with high-throughput diaPASEF-based data acquisition, this workflow enables the analysis of up to 60 samples per day. The specificity was determined to be > 99,9 % in an analysis of 221 plasma, swab and cell culture samples covering 18 different viruses (e.g. SARS, MERS, EBOV, MPXV). The sensitivity of this approach for the detection of SARS-CoV-2 in nasopharyngeal swabs corresponds to a PCR cycle threshold of 27 with comparable quantitative accuracy to metagenomics. vPro-MS enables the integration of untargeted virus identification in large-scale proteomic studies of biofluids such as human plasma to detect previously undiscovered virus infections in patient specimens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3