A foundational transformer leveraging full night, multichannel sleep study data accurately classifies sleep stages

Author:

Fox BenjaminORCID,Jiang Joy,Wickramaratne Sajila,Kovatch Patricia,Suarez-Farinas Mayte,Shah Neomi A,Parekh Ankit,Nadkarni Girish N

Abstract

AbstractStudy ObjectivesTo investigate whether a foundational transformer model using 8-hour, multi-channel data from polysomnograms can outperform existing artificial intelligence (AI) methods for sleep stage classification.MethodsWe utilized the Sleep Heart Health Study (SHHS) visits 1 and 2 for training and validation and the Multi-Ethnic Study of Atherosclerosis (MESA) for testing of our model. We trained a self-supervised foundational transformer (called PFTSleep) that encodes 8-hour long sleep studies at 125 Hz with 7 signals including brain, movement, cardiac, oxygen, and respiratory channels. These encodings are used as input for training of an additional model to classify sleep stages, without adjusting the weights of the foundational transformer. We compared our results to existing AI methods that did not utilize 8-hour data or the full set of signals but did report evaluation metrics for the SHHS dataset.ResultsWe trained and validated a model with 8,444 sleep studies with 7 signals including brain, movement, cardiac, oxygen, and respiratory channels and tested on an additional 2,055 studies. In total, we trained and tested 587,944 hours of sleep study signal data. Area under the precision recall curve (AUPRC) scores were 0.82, 0.40, 0.53, 0.75, and 0.82 and area under the receiving operating characteristics curve (AUROC) scores were 0.99, 0.95, 0.96, 0.98, and 0.99 for wake, N1, N2, N3, and REM, respectively, on the SHHS validation set. For MESA, the AUPRC scores were 0.56, 0.16, 0.40, 0.45, and 0.65 and AUROC scores were 0.94, 0.77, 0.87, 0.91, and 0.96, respectively. Our model was compared to the longest context window state-of-the-art model and showed increases in macro evaluation scores, notably sensitivity (3.7% increase) and multi-class REM (3.39% increase) and wake (0.97% increase) F1 scores.ConclusionsUtilizing full night, multi-channel PSG data encodings derived from a foundational transformer improve sleep stage classification over existing methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3