Clinical Advancement Forecasting

Author:

Czech EricORCID,Wojdyla RafalORCID,Himmelstein DanielORCID,Frank DanielORCID,Miller NickORCID,Milwid JackORCID,Kolom AdamORCID,Hammerbacher JeffORCID

Abstract

Choosing which drug targets to pursue for a given disease is one of the most impactful decisions made in the global development of new medicines. This study examines the extent to which the outcomes of clinical trials can be predicted based on a small set of longitudinal (temporally labeled) evidence and properties of drug targets and diseases. We demonstrate a novel statistical learning framework for identifying the top 2% of target-disease pairs that are as much as 4-5x more likely to advance beyond phase 2 trials. This framework is 1.5-2x more effective than an Open Targets composite score based on the same set of evidence. It is also 2x more effective than a common measure for genetic support that has been observed previously, as well as in this study, to confer a 2x higher likelihood of success. Utilizing a subset of our biomedical evidence base, non-negative linear models resulting from this framework can produce simple weighting schemes across various types of human, animal, and cell model genomic, transcriptomic, proteomic, and clinical evidence to identify previously undeveloped target-disease pairs poised for clinical success. In this study we further explore: i) how longitudinal treatment of evidence relates to leakage and reverse causality in biomedical research and how temporalized evidence can mitigate common forms of potential biases and inflation ii) the relative impact of different types of features on our predictions; and iii) an analysis of the space of currently undeveloped, tractable targets predicted with these methods to have the highest likelihood of clinical success. To ease reproduction and deployment, no data is used outside of Open Targets and the described methods require no expert knowledge, and can support expansion of lines of evidence to further improve performance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3