Enhanced Suppression ofStenotrophomonas maltophiliaby a Three-Phage Cocktail: Genomic Insights and Kinetic Profiling

Author:

Monsibais Alisha N.ORCID,Tea Olivia,Ghatbale Pooja,Phan Jennifer,Lam Karen,Paulson McKenna,Tran Natalie,Suder Diana S.,Blanc Alisha N.,Samillano Cyril,Suh Joy,Dunham SageORCID,Gonen Shane,Pride DavidORCID,Whiteson KatrineORCID

Abstract

ABSTRACTIn our era of rising antibiotic resistance,Stenotrophomonas maltophilia(STM) is an understudied, gram-negative, aerobic bacterium widespread in the environment and increasingly causing opportunistic infections. Treating STM infections remains difficult, leading to an increase in disease severity and higher hospitalization rates in people with Cystic Fibrosis (pwCF), cancer, and other immunocompromised health conditions. The lack of effective antibiotics has led to renewed interest in phage therapy; however, there is a need for well-characterized phages. In response to an oncology patient with a respiratory infection, we collected 18 phages from Southern California wastewater influent that exhibit different plaque morphology against STM host strain B28B, cultivated from a blood sample. Here, we characterize the genomes and life cycle kinetics of our STM phage collection. We hypothesize that genetically distinct phages give rise to unique lytic life cycles that can enhance bacterial killing when combined into a phage cocktail compared to the individual phages alone. We identified three genetically distinct clusters of phages, and a representative from each group was screened for potential therapeutic use and investigated for infection kinetics. The results demonstrated that the three-phage cocktail significantly suppressed bacterial growth compared to individual phages when observed for 48 hours. We also assessed the lytic impacts of our three-phage cocktail against a collection of 46 STM strains to determine if a multi-phage cocktail can expand the host range of individual phages. Our phages remained strain-specific and infect >50% of tested strains. The multi-phage cocktail maintains bacterial growth suppression and prevents the emergence of phage-resistant strains throughout our 40-hour assay. These findings suggest specialized phage cocktails may be an effective avenue of treatment for recalcitrant STM infections resistant to current antibiotics.IMPORTANCEPhage therapy could provide a vital strategy in the fight against antimicrobial resistance (AMR) bacterial infections; however, significant knowledge gaps remain. This study investigates phage cocktail development for the opportunistic pathogenStenotrophomonas maltophilia(STM). Our findings contribute novel phages, their lytic characteristics, and limitations when exposed to an array of clinically relevant STM strains. Eighteen bacteriophages were isolated from wastewater influent from Escondido, California, and subjected to genomic analysis. We investigated genetically distinct phages to establish their infection kinetics and developed them into a phage cocktail. Our findings suggest that a genetically distinct STM phage cocktail provides an effective strategy for bacterial suppression of host strain B28B and five other clinically relevant STM strains. Phage therapy against STM remains poorly understood, as only 39 phages have been previously isolated. Future research into the underlying mechanism of how phage cocktails overwhelm the host bacteria will provide essential information that could aid in optimizing phage applications and impact alternative treatment options.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3