Mammalian retinal specializations for high acuity vision evolve in response to both foraging strategies and morphological constraints

Author:

Kopania Emily E. K.ORCID,Clark Nathan L.

Abstract

AbstractVision is a complex sensory system that requires coordination among cellular and morphological traits, and it remains unclear how functional relationships among traits interact with ecological selective pressures to shape the evolution of vision. Many species have specialized high visual acuity regions in the retina defined by patterns of ganglion cell density, which may evolve in response to ecological conditions. For example, ganglion cell density can increase radially towards the center of the retina to form an area centralis, which is thought to improve acuity towards the center of the visual field in predators. Another example is the horizontal streak, where ganglion cells are dense across the center of the retina, which is thought to be beneficial in horizon-dominated habitats. At the morphological level, many have proposed that predation selects for high orbit convergence angles, or forward-facing eyes. We tested these hypotheses in a phylogenetic framework across eutherian mammals and only found support for the association between the horizontal streak and horizon-dominated habitats. We also tested if retinal specializations evolve in response to orbit convergence angles. We found that horizontal streaks were associated with side-facing eyes, which may both facilitate panoramic vision. Previous studies observed that some species with side-facing eyes have an area centralis shifted towards the temporal side of the retina, such that the high acuity region would project forward, but this relationship had not been tested quantitatively. We found that the temporal distance of the area centralis from the center of the retina was inversely correlated with orbit convergence, as predicted. Our work shows a strong relationship between orbit convergence and retinal specializations. We find support that both visual ecology and functional interactions among traits play important roles in the evolution of some ocular traits across mammals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3