Abstract
AbstractWhere each species actually lives is distinct from where it could potentially survive and persist. This suggests that it may be important to distinguish established from enabled biome affinities when considering how ancestral species moved and evolved among major habitat types. We introduce a new phylogenetic method, called RFBS, to model how anagenetic and cladogenetic events cause established and enabled biome affinities (or, more generally, other discrete realized versus fundamental niche states) to shift over evolutionary timescale. We provide practical guidelines for how to assign established and enabled biome affinity states to extant taxa, using the flowering plant clade Viburnum as a case study. Through a battery of simulation experiments, we show that RFBS performs well, even when we have realistically imperfect knowledge of enabled biome affinities for most analyzed species. We also show that RFBS reliably discerns established from enabled affinities, with similar accuracy to standard competing models that ignore the existence of enabled biome affinities. Lastly, we apply RFBS to Viburnum to infer ancestral biomes throughout the tree and to highlight instances where repeated shifts between established affinities for warm and cold temperate forest biomes were enabled by a stable and slowly-evolving enabled affinity for both temperate biomes.
Publisher
Cold Spring Harbor Laboratory