Entropy production constrains information throughput in gene regulation

Author:

Gehri MaximilianORCID,Stelzl LukasORCID,Koeppl HeinzORCID

Abstract

Biological signal processing typically requires energy, leading us to hypothesize that a cell’s information processing capacity is constrained by its energy dissipation. Signals and their processing mechanisms are often modeled using Markovian chemical reaction networks (CRNs). To enable rigorous analysis, we review and reformulate stochastic thermodynamics for open CRNs, utilizing Kurtz’s process-based formulation. In particular, we revisit the identification of the energy dissipation rate with the entropy production rate (EPR) at the non-equilibrium steady state (NESS). We also highlight potential inconsistencies in traditional formulations for generic Markov processes when applied to open CRNs, which may lead to erroneous conclusions about equilibrium, reversibility, and the EPR. Additionally, we review the concepts of mutual information (MI) and directed information (DI) between continuous-time trajectories of CRNs, which capture the transmission of spatiotemporal patterns. We generalize existing expressions for the MI, originally accounting for transmission between two species, to now include transmission between arbitrary subnetworks. A rigorous derivation of the DI between subnetworks is presented. Based on channel coding theorems for continuous-time channels with feedback, we argue that directed information is the appropriate metric for quantifying information throughput in cellular signal processing. To support our initial hypothesis within the context of gene regulation, we present two case studies involving small promoter models: a two-state nonequilibrium promoter and a three-state promoter featuring two activation levels. We provide analytical expressions of the directed information rate (DIR) and maximize them subject to an upper bound on the EPR. The maximum is shown to increase with the EPR.

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Chromatin Remodelers in the 3D Nuclear Compartment;Frontiers in Genetics,2020

2. Atp hydrolysis coordinates the activi-ties of two motors in a dimeric chromatin remodeling enzyme;Journal of Molecular Biology,2022

3. W. S. Klug , M. R. Cummings , C. A. Spencer , M. A. Palladino , and D. J. Killian , “Concepts of genetics,” (2020).

4. U. Alon , An introduction to systems biology: design principles of biological circuits (Chapman and Hall/CRC, 2019).

5. Understanding the temporal codes of intra-cellular signals;Current opinion in genetics & development,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3