Minimally invasive activation of spared interneurons alleviates local CA1 hypersynchrony and behavioral deficits in a model of temporal lobe epilepsy

Author:

Matringhen CélanieORCID,Vigier Alexandre,Bourtouli Nikoleta,Marissal ThomasORCID

Abstract

AbstractBackgroundTemporal lobe epilepsy (TLE) is associated with severe cognitive impairments including memory deficits. The dysfunction of hippocampal inhibitory neurons is proposed as a key mechanism and possible target for therapeutic approaches. However, the nature and extent of alterations in hippocampal inhibitory neurons remain unclear, as does their impact on behavioral impairments associated with TLE.MethodsWe investigated the role of inhibitory neurons from the CA1 hippocampal region on memory deficits associated with TLE, considering both the survival and changes in the activity of a large population of interneurons. To this end, we used a combination of immunolabelling, calcium imaging, electrophysiology, human-applicable chemogenetic tools, and behavioral testing on a reliable mouse pilocarpine TLE model.ResultsWe show that in TLE mice with severely disturbed spatial behavior, CA1 major interneuron populations are spared from histological damages that affect the epileptic hippocampus (e.g., sclerosis). However, CA1 interneurons fire less in epileptic than in control conditions, resulting in increased synchronization and activity of the epileptic CA1 network in vitro. Restoring CA1 interneuron discharge using a chemogenetic strategy rescued CA1 activity and synchronization in vitro. In vivo, the minimally invasive chemogenetic activation of hippocampal interneurons does not affect generalized seizures but reduces behavioral alterations.ConclusionsOur data suggest that rescuing CA1 local network dynamics using interneurons as a lever could be sufficient to decrease behavioral deficits related to TLE.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3