PMS2 has both pro-mutagenic and anti-mutagenic effects on repeat instability in the Repeat Expansion Diseases

Author:

Walker Alexandra,Jimenez Diego Antonio,Usdin KarenORCID,Zhao XiaonanORCID

Abstract

AbstractGenome Wide Association studies (GWAS) have implicated PMS2 as a modifier of somatic expansion in Huntington’s disease (HD), one of >45 known Repeat Expansion Diseases (REDs). PMS2 is a subunit of the MutLα complex, a major component of the mismatch repair (MMR) system, a repair pathway that is involved in the generation of expansions in many different REDs. However, while MLH3, a subunit of a second MutL complex, MutLγ, is required for all expansions, PMS2 has been shown to protect against expansion in some model systems but to drive expansion in others. To better understand PMS2’s behavior, we have compared the effect of the loss of PMS2 in different tissues of an HD mouse model (CAG/CTG repeats) and a mouse model for the Fragile X-related disorders (FXDs), disorders that result from a CGG/CCG repeat expansion. Mice heterozygous forPms2show increased expansions in most expansion-prone tissues in both disease models. However, inPms2null mice expansions of both repeats increased in some tissues but decreased in others. Thus, the previously reported differences in the effects of PMS2 in different model systems do not reflect fundamentally different roles played by PMS2 in different REDs, but rather the paradoxical effects of PMS2 in different cellular contexts. These findings have important implications not only for the mechanism of expansion and the development of therapeutic approaches to reduce the pathology generated by repeat expansion, but also for our understanding of normal MMR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3