Differential requirement of m6A reader proteins, IGF2BP2 and HNRNPA2B1 for the processing of N6-methyladenosine modified H19 lncRNA: Stability versus miR-675 biogenesis

Author:

Jana SamarjitORCID,Chowdhury AbhishekORCID,Somasundaram KumaravelORCID

Abstract

AbstractH19, a lnc-pri-miRNA that encodes miR-675, is dysregulated in numerous cancers. However, the specific mechanisms underlying H19 processing, particularly miR-675 formation, remain unclear. Our study reveals that H19 is highly expressed and m6A modified in a METTL3-dependent manner in glioblastoma (GBM) and glioma stem cells (GSCs). Silencing METTL3 reduced both H19 and miR-675 levels, whereas overexpressing METTL3 promoted miR-675 processing without affecting H19 levels. Further, miR-675 derived from exogenously expressed H19 was affected considerably more in METTL3 silenced glioma cells compared to H19 levels, suggesting differential requirements in the processing of m6A modified H19 transcript. We demonstrate that H19 interacts with m6A reader proteins, IGF2BP2 and HNRNPA2B1, and silencing either reduced H19 and miR-675 levels. However, a high level of miR-675 seen in METTL3 overexpressing cells is severely affected in HNRNPA2B1-silenced compared to IGF2BP2-silenced glioma cells. Interestingly, IGF2BP2 silencing more significantly affected H19 stability from exogenous H19 construct, while HNRNPA2B1 silencing severely impacted miR-675 processing. Site-directed mutagenesis confirmed the presence of two m6A sites in the first exon of H19, with site #1 facilitating HNRNPA2B1 interaction to promote miR-675 processing. In contrast, the IGF2BP2 interaction is promoted by site #2, resulting in enhanced H19 stability. H19-METTL3-HNRNPA2B1-miR675 axis inhibited Calneuron 1 (CALN1), a known target of miR-675, to promote glioma cell migration. Notably, a low CALN1/high H19 predicted a poor prognosis in GBM patients and was further exacerbated by a high METTL3 or HNRNPA2B1 but not IGF2BP2 transcript levels. Thus, we found that the H19 transcript is highly expressed in GBM and m6A modified, and the m6A reader proteins, IGF2BP2 and HNRNPA2B1, regulate the H19 processing differently to promote glioma cell migration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3