CryptoBench: Cryptic protein-ligand binding sites dataset and benchmark

Author:

Škrhák VítORCID,Novotný MarianORCID,Feidakis Christos P.ORCID,Krivák RadoslavORCID,Hoksza DavidORCID

Abstract

AbstractStructure-based methods for detecting protein-ligand binding sites play a crucial role in various domains, from fundamental research to biomedical applications. However, current prediction methodologies often rely on holo (ligand-bound) protein conformations for training and evaluation, overlooking the significance of the apo (ligand-free) states. This oversight is particularly problematic in the case of cryptic binding sites (CBSs) where holo-based assessment yields unrealistic performance expectations. To advance the development in this domain, we introduce CryptoBench, a benchmark dataset tailored for training and evaluating novel CBS prediction methodologies. CryptoBench is constructed upon a large collection of apo-holo protein pairs, grouped by UniProtID, clustered by sequence identity, and filtered to contain only structures with substantial structural change in the binding site. CryptoBench comprises 1,107 structures with predefined cross-validation splits, making it the most extensive CBS dataset to date. To establish a performance baseline, we measured the predictive power of sequence- and structure-based CBS residue prediction methods using the benchmark. We selected PocketMiner as the state-of-the-art representative of the structure-based methods for CBS detection, and P2Rank, a widely-used structure-based method for general binding site prediction that is not specifically tailored for cryptic sites. For sequence-based approaches, we trained a neural network to classify binding residues using protein language model embeddings. Our sequence-based approach outperformed PocketMiner and P2Rank across key metrics, including AUC, AUPRC, MCC, and F1 scores. These results provide baseline benchmark results for future CBS and potentially also non-CBS prediction endeavors, leveraging CryptoBench as the foundational platform for further advancements in the field.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3