An explainable graph neural network approach for integrating multi-omics data with prior knowledge to identify biomarkers from interacting biological domains

Author:

Tripathy Rohit K.ORCID,Frohock Zachary,Wang Hong,Cary Gregory A.ORCID,Keegan StephenORCID,Carter Gregory W.ORCID,Li Yi

Abstract

AbstractThe rapid growth of multi-omics datasets, in addition to the wealth of existing biological prior knowledge, necessitates the development of effective methods for their integration. Such methods are essential for building predictive models and identifying disease-related molecular markers. We propose a framework for supervised integration of multi-omics data with biological priors represented as knowledge graphs. Our framework is based on the use of graph neural networks (GNNs) to model the relationships among features from high-dimensional ‘omics data and set transformers to integrate low dimensional representations of ‘omics features. Furthermore, our framework incorporates explainability methods to elucidate important biomarkers and extract interaction relationships between biological quantities of interest. We demonstrate the effectiveness of our approach by applying it to Alzheimer’s disease (AD) multi-omics data from the ROSMAP cohort, showing that the integration of transcriptomics and proteomics data with AD biological domain network priors improves the prediction accuracy of AD status and highlights robust AD biomarkers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3