Abstract
Cell migration in narrow microenvironments is a hallmark of numerous physiological processes, involving successive cycles of confinement and release that drive significant morphological changes. However, it remains unclear whether migrating cells can retain a memory of their past morphological states, which could potentially enhance their navigation through confined spaces. By combining cell migration assays on standardized microsystems with biophysical modeling and biochemical perturbations, we demonstrate that local geometry governs these morphological switches, thereby facilitating cell passage through long and narrow gaps. We uncovered a long-term memory of past confinement events in migrating cells, with morphological states correlated across transitions through actin cortex remodeling. These findings suggest that mechanical memory in migrating cells plays an active role in their migratory potential in confined environments.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献