Lung basement membranes are compositionally and structurally altered following resolution of acute inflammation

Author:

Brand Oliver,Kirkham SaraORCID,Jagger Christopher,Ozols MatissORCID,Lennon RachelORCID,Hussell TracyORCID,Eckersley AlexanderORCID

Abstract

AbstractIdentification of pathways preventing recovery from acute respiratory viral infection is under-studied but essential for long-term health. Using unbiased proteomics, we reveal an unexpected persistent reduction in lung basement membrane proteins in mice recovered from influenza infection. Basement membrane provides a critical scaffold for heterogeneous cell types and the proteins they secrete/express at the endothelial and epithelial barrier. Further peptide location fingerprinting analysis shows inherent structure-associated changes within core collagen IV and laminin components, particularly within matrikine-producing regions of collagen IV. Our results imply lingering damage to the basement membrane network despite full recovery from viral infection. Surprisingly, these structure-associated changes in laminin and collagen IV components are also observed in non-infected aged mice indicating that inflammation-driven basement membrane degeneration may contribute to tissue ageing. Interestingly, macrophages in regions deficient in basement membrane express collagen IV and laminin chains. Repair of the basement membrane should therefore be targeted to improve overall lung health.Non-technical summaryLung virus infection is a constant global threat, despite developments in vaccination and anti-viral treatments. We have a deep understanding of this inflammatory condition, but less is known about the drivers of persistent problems, including fatigue and breathlessness as illustrated by “long COVID”. Here, we reveal a novel finding that a critical structure in the lung (the basement membrane) remains damaged even after the virus and symptoms have cleared. This structure supports a variety of cells that and forms a barrier that lines the airspaces. It also regulates fluid and cell movement into these airspaces. Remarkably, we show that similar persistent changes after virus infection are also evident in aged lungs, which implies that lung complications with age may be due to repeated inflammation. By deciphering the processes causing persistent basement membrane changes, we provide an entirely novel area to target with new medicines to treat complications arising from viral infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3